3 research outputs found

    Promises and pitfalls of topological data analysis for brain connectivity analysis

    Get PDF
    Acknowledgment The authors thank Jakub Kopal for sharing the preprocessed fMRI time series and Barbora Bučková for sharing scripts for classification pipelinePeer reviewedPublisher PD

    Toward a reliable detection of arachnophobia: subjective, behavioral, and neurophysiological measures of fear response

    Get PDF
    IntroductionThe administration of questionnaires presents an easy way of obtaining important knowledge about phobic patients. However, it is not well known how these subjective measurements correspond to the patient’s objective condition. Our study aimed to compare scores on questionnaires and image evaluation to the objective measurements of the behavioral approach test (BAT) and the neurophysiological effect of spiders extracted from fMRI measurements. The objective was to explore how reliably subjective statements about spiders and physiological and behavioral parameters discriminate between phobics and non-phobics, and what are the best predictors of overall brain activation.MethodsBased on a clinical interview, 165 subjects were assigned to either a “phobic” or low-fear “control” group. Finally, 30 arachnophobic and 32 healthy control subjects (with low fear of spiders) participated in this study. They completed several questionnaires (SPQ, SNAQ, DS-R) and underwent a behavioral approach test (BAT) with a live tarantula. Then, they were measured in fMRI while watching blocks of pictures including spiders and snakes. Finally, the respondents rated all the visual stimuli according to perceived fear. We proposed the Spider Fear Index (SFI) as a value characterizing the level of spider fear, computed based on the fMRI measurements. We then treated this variable as the “neurophysiological effect of spiders” and examined its contribution to the respondents’ fear ratings of the stimuli seen during the fMRI using the redundancy analysis (RDA).ResultsThe results for fear ranks revealed that the SFI, SNAQ, DS-R, and SPQ scores had a significant effect, while BAT and SPQ scores loaded in the same direction of the first multivariate axis. The SFI was strongly correlated with both SPQ and BAT scores in the pooled sample of arachnophobic and healthy control subjects.DiscussionBoth SPQ and BAT scores have a high informative value about the subject’s fear of spiders and together with subjective emotional evaluation of picture stimuli can be reliable predictors of spider phobia. These parameters provide easy and non-expensive but reliable measurement wherever more expensive devices such as magnetic resonance are not available. However, SFI still reflects individual variability within the phobic group, identifying individuals with higher brain activation, which may relate to more severe phobic reactions or other sources of fMRI signal variability

    Mixture Components Inference for Sparse Regression: Introduction and Application for Estimation of Neuronal Signal from fMRI BOLD

    Full text link
    Sparse linear regression methods including the well-known LASSO and the Dantzig selector have become ubiquitous in the engineering practice, including in medical imaging. Among other tasks, they have been successfully applied for the estimation of neuronal activity from functional magnetic resonance data without prior knowledge of the stimulus or activation timing, utilizing an approximate knowledge of the hemodynamic response to local neuronal activity. These methods work by generating a parametric family of solutions with different sparsity, among which an ultimate choice is made using an information criteria. We propose a novel approach, that instead of selecting a single option from the family of regularized solutions, utilizes the whole family of such sparse regression solutions. Namely, their ensemble provides a first approximation of probability of activation at each time-point, and together with the conditional neuronal activity distributions estimated with the theory of mixtures with varying concentrations, they serve as the inputs to a Bayes classifier eventually deciding on the verity of activation at each time-point. We show in extensive numerical simulations that this new method performs favourably in comparison with standard approaches in a range of realistic scenarios. This is mainly due to the avoidance of overfitting and underfitting that commonly plague the solutions based on sparse regression combined with model selection methods, including the corrected Akaike Information Criterion. This advantage is finally documented in selected fMRI task datasets
    corecore